Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma
نویسندگان
چکیده
We propose that deregulated T-helper-cell (Th) signaling underlies evolving Th17 cytokine expression seen during progression of cutaneous T-cell lymphoma (CTCL). Accordingly, we developed a lymphoma progression model comprising cell lines established at indolent (MAC-1) and aggressive (MAC-2A) CTCL stages. We discovered activating JAK3 (V722I) mutations present at indolent disease, reinforced in aggressive disease by novel compound heterozygous SOCS1 (G78R/D105N) JAK-binding domain inactivating mutations. Though isogenic, indolent and aggressive-stage cell lines had diverged phenotypically, the latter expressing multiple Th17 related cytokines, the former a narrower profile. Importantly, indolent stage cells remained poised for Th17 cytokine expression, readily inducible by treatment with IL-2 - a cytokine which mitigates Th17 differentiation in mice. In indolent stage cells JAK3 expression was boosted by IL-2 treatment. Th17 conversion of MAC-1 cells by IL-2 was blocked by pharmacological inhibition of JAK3 or STAT5, implicating IL2RG - JAK3 - STAT5 signaling in plasticity responses. Like IL-2 treatment, SOCS1 knockdown drove indolent stage cells to mimic key aggressive stage properties, notably IL17F upregulation. Co-immunoprecipitation experiments showed that SOCS1 mutations abolished JAK3 binding, revealing a key role for SOCS1 in regulating JAK3/STAT5 signaling. Collectively, our results show how JAK/STAT pathway mutations contribute to disease progression in CTCL cells by potentiating inflammatory cytokine signaling, widening the potential therapeutic target range for this intractable entity. MAC-1/2A cells also provide a candidate human Th17 laboratory model for identifying potentally actionable CTCL markers or targets and testing their druggability in vitro.
منابع مشابه
Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-gamma on STAT3 and Smads.
Suppressor of cytokine signaling 1 (SOCS1) is an important negative regulator for cytokines; however, the role of SOCS1 in Th17 differentiation has not been clarified. We generated T cell-specific SOCS1-deficient mice and found that these mice were extremely resistant to a Th17-dependent autoimmune disease model, experimental autoimmune encephalomyelitis. SOCS1-deficient naive CD4(+) T cells we...
متن کاملSilenced suppressor of cytokine signaling 1 (SOCS1) enhances the maturation and antifungal immunity of dendritic cells in response to Candida albicans in vitro
Dendritic cells (DCs) are known to play an important role in initiating and orchestrating antimicrobial immunity. Given the fact that candidiasis appears often in immunocompromised patients, it seems plausible that DCs hold the key to new antifungal strategies. One possibility to enhance the potency of DC-based immunotherapy is to silence the negative immunoregulatory pathways through the ablat...
متن کاملMicroRNA-155 Modulates Treg and Th17 Cells Differentiation and Th17 Cell Function by Targeting SOCS1
MicroRNA (miR)-155 is a critical player in both innate and adaptive immune responses. It can influence CD4(+) T cell lineage choice. To clarify the role of miR-155 in CD4(+) CD25(+) regulatory T (Treg)/T helper (Th)17 cell differentiation and function, as well as the mechanism involved, we performed gain-and loss-of-function analysis by transfection pre-miR-155 and anti-miR-155 into purified CD...
متن کاملMiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation
Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...
متن کاملSOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-γ and IL-17A production
Regulatory T cells (T(reg) cells) maintain immune homeostasis by limiting inflammatory responses. SOCS1 (suppressor of cytokine signaling 1), a negative regulator of cytokine signaling, is necessary for the suppressor functions of T(reg) cells in vivo, yet detailed mechanisms remain to be clarified. We found that Socs1(-/-) T(reg) cells produced high levels of IFN-γ and rapidly lost Foxp3 when ...
متن کامل